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The radiation resistance (damping coefficient) and virtual mass for a circular disk that 
executes small, heaving oscillations at the surface of a semi-infinite body of water, 
originally calculated by MacCamy (1961~)  through the numerical solution of an 
integral equation, are calculated from a systematic hierarchy of variational approxi- 
mations. The first member of this hierarchy is based on the exact solution of the 
boundary-value problem for a = 0 and is in error by less than 2 % for 0 < a < 1, 
where a = au2/g (a = radius of disk, u = angular frequency, g = gravity). The 
second approximation provides a variational interpolation between the limiting 
results for a = 0 and a = 00 and appears to be in error by less than 2 yo for all a 
except in certain narrow intervals, where pseudoresonances pose difficulties. Those 
difficulties are overcome by local reference to the third approximation. Numerical 
results are plotted for 0 < a < 10. Asymptotic results for a? 00 are developed in an 
Appendix. 

The corresponding formulation and the first variational approximation are devel- 
oped for pitching oscillations of the disk. 

1. Introduction 
I consider here the excitation of gravity waves on the surface of the semi-infinite 

body of water z > 0 by a circular disk of radius a that executes small, heaving 
oscillations of angular frequency u about the equilibrium position z = 0, r < a. This 
problem has been previously considered by MacCamy (1961 a) and is closely related 
to Havelock’s (1955) problem for a heaving sphere. Both disk and sphere may be 
regarded as idealized models of a ship or as laboratory wavemakers. The disk permits 
a simpler analytical formulation than the sphere, but at the expense of an edge 
singularity. 

I assume that the fluid is incompressible and inviscid and that the motion originates 
from rest, by virtue of which there exists a complex velocity potential 4 such that 
the particle velocity is given by 

q = Re(Vq5 e-iut}. (1 .1)  

The basic problem is to determine 4 for a prescribed complex amplitude w of the 
velocity of the disk. The corresponding perturbation pressure, on the assumption of 
small disturbances, is given by 

p-p, = p, Re(iu4 e-iut}, (1.2) 

where p, and po are the ambient values of pressure and density. The complex 
amplitude of the vertical force on the disk is ipouna2($), where, here and sub- 
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sequently, ( ) signifies an average over the disk. The corresponding impedance, 
defined as the ratio of the complex amplitudes of force and velocity, is given by 

(1.3) Z = ip, ana2((9>/w = R- iaM, 

where R is the radiation resistance (the mean radiated power is +Rlw12), and M is the 
virtual mass. It follows from dimensional considerations that 

are functions of the single parameter 

(1.4a, b )  

MacCamy (1961 a )  uses Havelock’s (1955) point-source Green function to obtain 
an integral equation that is equivalent to (A 1 )  below. He then reduces this integral 
equation to  one with a somewhat simpler kernel, solves the reduced integral equation 
numerically, and determines the equivalents of R and M through numerical inte- 
gration. This procedure fails for sufficiently large a and does not provide analytical 
approximations. I present here a variational formulation, following that for dif- 
fraction through a circular aperture (Levine k Schwinger 1948; Miles 1952), which 
begins ($3) with a Hankel transformation of the boundary-value problem and 
culminates in a variational form of Schwinger’s type for the impedance 2. This 
formulation appears to be both simpler and more efficient than that of MacCamy, 
is useful for all a, and provides analytical approximations. 

I first (in $4) substitute the limiting solution for a = 0 directly into the variational 
form to obtain approximations to  R and M that prove to be in error by less than 
2% for 0 < a < 1. I then (in $5)  develop a variational interpolation between the 
limiting results for a = 0 and a = 00. The estimated error in this second approxi- 
mation is, through comparison with a third approximation, less than 2% for all a 
except in certain narrow intervals, wherein pseudoresonances pose numerical diffi- 
culties. I circumvent these difficulties through local reference to  the third approxi- 
mation (which also exhibits pseudoresonances, but at different a). The integrals that 
appear in the variational approximations are Hilbert transforms, for which 
asymptotic approximations may be obtained through Ursell’s (1983) method ; I give 
the appropriate development in Appendix C. 

The problems of radiation owing to pitching oscillations of, and scattering of a 
plane wave by, a circular disk, previously considered by Kim (1963) and MacCamy 
(1961 b) ,  respectively, admit formulations paralleling that of $$2-5. I sketch the 
formulation and develop the first variational approximation for pitching in $6. 

2. Boundary-value problem 
The assumption of incompressible, inviscid, irrotational flow implies 

vzq5 = 0 (2 > 0). (2.1) 

The linearized boundary condition on the free surface is 

q5,+Kq5 = 0 (2 = 0, r > a ) ,  ( 2 . 2 ~ )  

where K = a2/g is the wavenumber, whilst that on the disk is 

q5, = w (2 = 0, r < a) .  (2.2b) 
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In addition, $ must satisfy the null condition 

and the radiation condition 

&($r- iqb) -+O ( ~ r t  co, z = 0). (2.4) 

2.1. T h e  l imit  aJ.0 

The problem posed by (2.1)-(2.3) in the limit aJ.0, for which ( 2 . 2 ~ )  reduces to 9, = 0. 
reduces to that for a circular piston in a rigid baffle, for which the solution is giren 
by (cf. Lamb 1932, $102, 2') 

( z  = 0, r < a ) ,  
co J,(ku) Jo(kr) dk 2wa 

4 = -wa[ 0 k R 
(2.5) 

where E is a complete elliptic integral of the second kind. Averaging (2.5) over the 
disk and substituting the result into (1.3), we obtain 

a=# (a=O). ( 2 . 6 ~ )  

We infer from a calculation of the mean radiated power, using (3.9) and (4.4) below. 

R++a (aJ.0). (2 .6b )  
that 

2.2. The limit  a t  co 
The problem posed by (2.1)-(2.3) in the limit afco, for which ( 2 . 2 ~ ~ )  reduces to 
g5 = 0, is equivalent to that for a circular disk moving along the z-axis in an infinite 
fluid. The potential on the disk is given by (Lamb 1932, $l02,4' and $108) 

( z  = 0, r c a) .  

the substitution of which into (1.3) yields 

a=! (a=co) .  

( 2 . i )  

(2.80) 

We infer from (3.9) and (5.1) below that 

E N  8a-' cos2a (a tco) .  (2 .8b )  

We remark that the tangential velocities implied by (2 .5)  and (2.7) as r T n  on 
z = 0 + are singular like -log (a - r )  and (a - r)% respect,ively. 

3. Integral-equation formulation 
We begin the solution of (2.1)-(2.4) by introducing 

f(r) = ( $ z + K $ ) z - o .  (3.1 n )  

which must vanish in r > a in consequence of (2.2a) and reduces to 

f = W + K $ .  (3.1 b) 

in r < a by virtue of (2.2b). The solution then may be constructed through a Hankel 
transformation of the original problem and is given by 

(3.2) 
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where the path of integration passes under the pole at k = K (see below), and 

(3.3) 

is the Hankel transform of (3.1) and is implicitly determined by (2 .2b) ,  which yields 
the integral equation 

= w (r < a). 
O3 F(k)  Jo(kr) k2dk Jo k-K 

(3.4) 

Equivalent integral equations for f(r) are developed in Appendix A. 
The asymptotic behaviour of (3.2) in the interior of the fluid, r2 +z2 .T rn with 

T / Z  = O ( l ) ,  is dominated by the contributions from the neighbourhood of k = 0 and 
exhibits the dipole behaviour 

We remark that this limit is not uniformly valid as ~ $ 0  and that the asymptotic 
behaviour for K = 0, q5 - -P(0 ) / ( r2+zZ$ ,  is source-like. 

It remains to determine the radiated field and confirm the radiation condition 
(2.4). Substituting 

into (3.2) and deforming the path of integration for the exp ( & ikr cos 6)  component 
of the integrand to the positive/negative-imaginary k-axis, we find that the integral 
is dominated by the contribution of the pole in the limit K r  .f rn with z fixed and may 
be approximated by 

9 N - 2iKF(K) e-Kz ( 3 . 7 ~ )  

(3.7 b )  

[If the path of integration in (3.2) were indented over the pole at  k = K (3.7a, b) would 
be replaced by their complex conjugates and would satisfy the radiation condition 
appropriate to an exp(iat) time dependence.] The complex amplitude of the 
corresponding, free-surface displacement is 

It follows from (3.8) (see Appendix B) that the mean radiated power is equal to 
! j l R l ~ 1 ~ ,  as anticipated in $1. It also follows that 

4. Variational formulation 
Multiplying (3.4) through by f(r), averaging over the disk, dividing the result 

through by ( f ) 2 ,  and invoking (3.3) and 
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we obtain the variational form 
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which is stationary with respect to first-order variations of 
solution to (3.4) and invariant under a scale transformation of 

(1.4). Invoking (1.3) and (3.lb), we obtain 

(cf. Miles 1952). 
This last result provides a direct approximation to the dimensionless impedance 

(4.2) 

F(k)  about the true- 

It follows from (3.1 b) and (2.5) thatf = w[l +O(a)] as aJ-0;  accordingly, we expect 

fo = 1, F,(k) = uk-l Jl(ka), (4.4a, b) 

to be suitable for moderate values of a .  Substituting (4.4b) into (4.2) and introducing 
x = ka and a = KU, we obtain 

the normalized ((fo) = 1) trial function 

O' q ( x )  dx 
A,= 2J0 -. 

x-a (4.5) 

Separating out the contribution of the indentation under the pole at x = a and 
reducing the Cauchy principal value of the integral by invoking the integral 
representation of G(x) [Watson 1945, $5.43 (2)] and then evaluating the resulting 
integral with respect to x as a Hilbert transform [Erdblyi et ul. (1954), $15.3 (12)], 
we obtain 

(4.6a) A, = 2ix4(a) + 2 [H0(2a cos 0)  + Yo(2a cos B ) ]  COB 20 dB 

= I +-+*or2 ln--y+:+ix --a3+0(a4 lna), 
8a 3 R  [ :  1 45x 

(4.63) 

where H,  is a Struve function and y = 0.5772 ... . Substituting (4.6b) into (4.3), we 
obtain [cf. (2.6)] 

It may be inferred from f = w[l + O(a) ]  and the variational principle that the O(a)  
term in ( 4 . 7 ~ )  and the 0(1) and O(a ha)  terms in (4.7b) are exact; cf. (2.6a, b). 

5. Variational interpolation 

(after normalization to (fl) = 1) 
It follows from (2.7) and (3.lb) that a suitable function for sufficiently large a is 

(5.1 a, b )  

This, together with the results of the preceding section, suggests that a variational 
interpolation between (2.6) and (2.8) may be obtained through the trial function 

F = A,F,+A,F~.  (5.2) 
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FIQURE 1.  The dimensionless radiation resistance, s R/p,,a%, as calculated from (4.3) using 
the approximations (4.5) (---) and (5.3) (-). 

Substituting (5.2) into (4.2), choosing A, = 1 (by virtue of the invariance of the 
variational form under a scale transformation of F), and invoking dA/dA, = 0, we 
obtain 

(5.3) 

where A,, = A, (4.5), 

dx J,(x) Ji(x) dx 
A,, = 3 ( 4  . (5.4a, b )  , d(x-a)  

The approximation A,, provides the correct leading terms in the asymptotic 
development of I? and A? (see Appendix C);  however, i t  fails as a40 (in which limit 
A,, + Q  rather than 1) and is rather unsatisfactory for moderate a, which implies that 
f ,  is an essential component of the trial function f for finite a. 

A systematic hierarchy of variational approximations to A, of which A, and A, are 
the first and second members, may be obtained by expandingf(r) in an appropriate, 
complete set of functions, of which f o  and f, are the first two members; cf. Levine 
& Schwinger (1948), who use f, cc [ t  - ( ~ / a ) ~ ] ~ - ;  (n = 1, 2, ...). 

The required numerical integrations may be effected through the identity (for a 
path of integration indented under the pole a t  x = a) 

(5.5) 
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1 -  

, 
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U 2 161 
10 0.289 1.218 
20 0.162 1.236 
30 0.117 1.252 
40 0.093 1.262 
50 0.079 1.268 
60 0.071 1.270 
70 0.059t 1.251t 
80 0.043 1.292 
90 0.042 1.292 

100 0.040 1.293 
t These values are suspect owing to the proximity of a = 70 to a pseudoresonance. 

TABLE 1.  Asymptotic approximations to 2 and 161 baaed on (C 11)-(C 13) and (5.3). 

The approximations fi, and &,, obtained through the substitution of (5.3) into (4.3), 
are plotted in figures 1 and 2. These approximations are within 2% of the third 
approximations 8, and except within certain narrow intervals (see below) in 
0 < a < 20, where I?, and d2 are based on the incorporation of (the Hankel transform 
of) the additional degree of freedomf, cx [ l -  ( ~ / a ) ~ ] s  in (5.2). The approximations go 
and i$&, (§4), which also are plotted in figures 1 and 2, differ from 8, and a, by less 
than 2 O/, for 0 < a < 1 but exhibit spurious oscillations for a 2 3 in consequence of 
the corresponding oscillations of J,(a) (the first zero of which is at  a = 3.83). These 
oscillations are almost completely smoothed out in fi, and a,, but the proximate 
zeros (pseudoresonames) of the numerator and denominator of (5.3) do pose difficulties 
in certain narrow intervals (e.g. a = 6.15f0.1 and 9.6f0.1). Similar pseudoreson- 
snces occur in and a,, and presumably in higher approximations, but they are 
in different neighbourhoods, by virtue of which 8, and a, may be used to smooth 

and B1 ; this has been done in figures 1 and 2, although graphical interpolation 
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would have sufficed. The smoothed approximations l?, and a, agree with those of 
MacCamy (1961a), as presented by Kim (1965), within the accuracy (x  +3%) of 
Kim’s plots for 0 < a < 4. [The pseudoresonances, which are probably an intrinsic 
consequence of the modal expansion of f(r), presumably move to increasingly large 
a as the level of truncation is increased. The difficulty is partly numerical in that the 
correct values of A,, A,, -A& and A,, + A,, -2A,, and their higher-order counterparts 
may be smaller than, or comparable with, the errors in the numerical integration.] 

The asymptotic expansions of A,,, A,, and A,, for a % 1 using Ursell’s (1983) method 
for Hilbert transforms are carried out in Appendix C. The asymptotic approximations 
to 8, and 8, obtained through the substitution of (Cll)-(C13) into (5.3) and (4.3) 
are given in table 1. It is evident that the approach to the asymptotes (2.8a, b) is 
extremely slow. 

6. Pitchingdisk 

is the azimuthal angle, the boundary condition (2.2b) is replaced by 
If the circular disk executes a pitching oscillation about the axis 6 = in, where 6 

#z = - ~ ) r  case (2 = 0, r < a ) ,  (6.1) 

where Q is the maximum angular velocity of the disk. Proceeding as in $3, we pose 
the solution of (2.1), ( 2 . 2 ~ ) ’  (2.3) and (2.4) in the form (cf. (3.2)) 

where the path of integration is indented under the pole at  k = K ,  

ra 

and the subscript 1 now designates the azimuthal wavenumber. Invoking (6.1), we 
obtain the integral equation (cf. (3.4)) 

= -Qr ( r  < a).  
( k )  J1 (kr)  k2 d k  J: ” k - K  

We define the counterpart of the complex impedance (1.3) as the ratio of the 
complex amplitude of the torque on the disk to the angular velocity 0: 

( 6 . 5 ~ ’  b )  
- ip, m a 2  (#r COB 6) 

51 
po una4 

2, = R,-ial = 

where I i s  the virtual moment of inertia. Proceeding as in $4, we obtain the variational 
form (cf. (4.2)) 

where 

Fi(0)  = (=) dF1 = A r j l ( r ) r 2  dr = $x2(rfl). 
k-0  0 

The limiting values of I may be determined by analogy with the procedures in $2 
[in particular, the solution for a = 00 follows Lamb (1932), $1091 and are given by 

1+&p0a5 ( a J O ) ,  I+&.p,a5 (al.00). (6.8a, b )  
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The coefficient & = 0.2667 ... compares with the value 0.266 determined by Kim 
(1963) through a numerical solution. 

A variational approximation for a 5 1 may be obtained by positing the trial 
function f, = r in (6.6). The end result is (cf. (4.5) and (4.6)) 

J2(x) dx 
, J x-a 

A, = 4 ( 6 . 9 ~ )  

= 4ik4(a)-4 [H0(2a cost))+ Yo(2a cose)] cos48 do, (6.9b) j: 
ix 16a 1 28a3 
16 1 5 ~  3 1 5 ~  + * ”  * 

=--4+1+-++2+-  (6 .9~ )  

Substituting ( 6 . 9 ~ )  into (6.5), we obtain 

-- ” - “.g(l-E+ ...)-A i [ l + ~ - ~ ) a + ( - & + ~ ) a z +  ...]. (6.10) 
poaa5 64 

The approximations to R, and I obtained through (6.5) and (6.9) agree with Kim’s 
(1963) plots within the accuracy with which the plots can be read ( f 2-3 %) in 
OGaOr2. 

Higher approximations may be obtained as in $5.  

The numerical calculations were carried out by Mr Mark Swenson. I am indebted 
to Professor Ursell and to one of the referees for several helpful comments. This work 
was supported in part by the Physical Oceanography Division, National Science 
Foundation, NSF Grant OCE81-17539, and by the Office of Naval Research under 
Contract N00014-84-K-0137, NR 062-318 (430). 

Appendix A. Reduced integral equation 
Combining (3.3) and (3.4), we obtain the equivalent integral equation 

where 

Invoking the identities 

K 2  -- - k + K + -  
k2 

k - K  k - K ’  

and the inverse transforms 
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where 6 is Dirac’s delta function, and K is an elliptic integral of the first kind, we 
obtain 

Substituting (A 7 )  into (A 1 )  and multiplying the result by the operator 1 + K ~ L I - ~ ,  
we obtain the reduced integral equation, 

which is equivalent to MacCamy’s (1961 a )  equation (52)  after restoring a missing 
factor of (1/2n) therein. 

Appendix B. Radiated power 
The mean surface-wave energy, which is half potential and half kinetic, is $o g la2 

per unit area. Invoking (3.8) for 6 and cg = ! ~ ( v / K )  for the group velocity, we then 
have 

P = c,(27cr) ($og1a2) = x2po V K I F ( K ) ~ ~  (B 1 )  

for the mean radiated power. 
Multiplying (3.4) through by the complex conjugate f(r), averaging over the disk, 

taking the imaginary part of the result (which is derived entirely from the indentation 
of the path of integration under the pole at k = K ) ,  and substituting (f) = W / x  from 
(4.2), we obtain 

~ c K ~ ~ F ( K ) ~ ~  = $x2 Im (w(f)) = $21hl-2halw12. (B 2) 

Substituting (B 2 )  into (B 1 )  and eliminating lhl-2hi through (4.3), we obtain 

P = +Rlw12. (B 3 )  

Appendix C. The limit at 00 

The asymptotic expansion of the Hilbert transform 

when f is an analytic function of x that  admits an asymptotic expansion of the form 

co 
f(s) - z x-n-  ( a n + A ,  coswz+B, sinwx) (0 < v < 1 )  (C 2) 

n - 0  

has been developed by Ursell (1983). Applying his results to  the integral 

we obtain 
a, a, 

h - -  X ~ V ( n + i ) a - ~ - l + i n  X [an(l-i cotw)+(A,-iiB,) eim] ((24) 
n - o  n - o  
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for 0 < v < 1 or 
00 

A N Z [a,(ix-1na)-d,+ix(A,-iB,) eiW]a-n-l (C 5) 
n-o  

for v = 1 (for which the present notation differs slightly from that of Ursell), where 

is the Mellin transform off, and 

This last result reduces to d, = A(%+ 1) if a, = 0. 
The result (C 5) provides the asymptotic expansions of A,, and All ,  for which 

+O(X-~)  , (C 8) 1 ---+-( 3cos2x 3 1-1sin2x 4x3 )+-- 15 cos2x 
4 x2 8 128 x4 

2sin2x 1-cos2x 
+ 2 4  

fl1(X) = $x-lJl(x) = - -- 
2 3  

whilst (C 4) with v = !j provides the expansion of Aol, for which 

[ 1 + cos :!-sin 22 
J , ( Z ) J ! ( X )  = in-4 

+O(X-?)]. (C 10) 
5-11 cos2x-11 sin22 

8d 
63-33 cos2x+33 sin22 

1282; 
+ + 

The required Mellin transforms are given by $6.8 (33) in Erdelyi et al. (1954). The 
end results are 

2 
A,, = - [ x ( i - e 2 i a ) + 2 - y - l n 8 a ] a - 1 - ~  i e2iaa-2 n 

151 
x( i -~a2 ' " )+~-y- ln8a  a-3+-e2iaa-4+O(a-5 lna),  (C 11) 

1 6 4  

l+t[ix( 1 +ezia) + 1 -7-ln 2a] a-2- t~  eZiaa-3 A =--a- 3x 
ll 4 

+ :[in( 1 - elia) + f - y - In 2a] a - 4  + o(a- 5), 

(C 13) 
gixf 
256 

+- [21- 11 (1 + i) eZia] a-;S + O ( a - f ) ,  

where y = 0.577215.. . is Euler's constant. 
Numerical results obtained through the substitution of (C ll)-(C 13) into (5.3) and 

(4.3) are given in table 1. These results exhibit pseudoresonances similar to those in 
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the results based on numerical integration; see discussion following (5.5). The 
substitution of (C 12) into (4.3) yields 

R1, N 801-' cos2a, all - sin2a-R 

which are asymptotically correct by virtue of the variational principle and the 
asymptotic validity off,, but are rather unsatisfactory approximations in the range 
of physical interest. 
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